
 
 
 
 
 
 
 
 
 

General Purpose Technologies and Economic Growth: 

Electricity Diffusion in the Manufacturing Sector Before 

WWII 

 

 
Cristiano Andrea Ristuccia and Solomos Solomou 

 
September 2010 

 
 

 
 
 

CWPE 1048 
 



 1 

GENERAL PURPOSE TECHNOLOGIES AND ECONOMIC 

GROWTH: ELECTRICITY DIFFUSION IN THE 

MANUFACTURING SECTOR BEFORE WWII 
 

 

 

September  2010 

 

 

 

Cristiano Andrea Ristuccia 

Trinity Hall 

Cambridge, UK 
 
 
 

Solomos Solomou 

Faculty of Economics 

University of Cambridge 

Cambridge, UK 

 

 

ABSTRACT 
 

This paper evaluates the diffusion of electricity within the context of a 

GPT perspective. The paper develops a new comparative data set on the 

usage of electricity in the manufacturing sectors of the US, Britain, 

France, Germany and Japan and proceeds to evaluate the hypotheses of a 

productivity slowdown and of a productivity bonus as postulated by many 

existing GPT models. 
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INTRODUCTION  
 

That technological change is an important determinant of modern economic 

growth is an idea that most economists would agree upon. However the details of this 

relationship are less clear.  One hypothesis that has been extensively discussed is the 

Schumpeterian perspective of technological clusters.  This perspective relating to 

major innovation has been used to model long (Kondratieff) cycles in the rate of 

economic growth. Studies that have seen modern economic history as displaying a 

sequence of GPTs have used this as a basis of a theory for long cycles in economic 

growth of the type that Schumpeter discussed (Freeman and Louçã, 2001). Although 

the relevance of Kondratieff cycles for understanding modern economic growth 

remains questionable, since the early 1990s a new theoretical approach has emerged 

that depicts  long-term growth unevenness as resulting from the emergence of General 

Purpose Technologies (GPTs) that create long waves of economic growth (Jovanovic 

and Rousseau, 2005; Aghion and Howitt, 2009).   

To date much of the work on GPTs has been theoretical in nature, informing 

us of possible outcomes but offering limited insights on actual historical economic 

growth. Working with fairly simple prototype models of GPTs a number of 

macroeconomic growth hypotheses have been accepted in the literature; for example, 

much of the early literature (Hornstein and Krusell 1996, Greenwood and Yorokoglu 

1997), argues that the diffusion of a new GPT will be correlated with a productivity 

slowdown in the early phase of the diffusion process, and after some time this would 

be followed by productivity acceleration.  As the title of a 1998 article by Helpman 

and Trajtenberg put it there would be “a time to sow and a time to reap”.1Indeed it is 

these growth effects that make GPTs inherently different from other technological 

changes.  As Helpman puts it: 

Growth that is driven by general purpose technologies is different from 

growth driven by incremental innovation.  Unlike incremental innovation, 

GPTs can trigger an uneven growth trajectory, which starts with a 

prolonged slowdown followed by a fast acceleration. 

(Helpman,  2004, p. 51)   

                                                 
1
  This hypothesis follows David 1990. 
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However, GPT models are, at present, simple thought experiments and have serious 

limitations when used to describe and explain historical economic growth.  Lipsey et 

al. (2005, p. 384) review the literature as it developed since the early 1990s and argue 

that all models to date share the common problem that they deal with a complex 

historical economic system inappropriately, seeing shifts in the rate of economic 

growth as the outcome of a single GPT. In reality, at any point in time, change in the 

rate of economic growth will be an outcome of the stock of GPTs at different stages 

of their life cycle, and as such the link between a particular GPT and historical 

economic growth is not uniquely determined. So while episodic effects on economic 

growth are a reasonable research hypothesis, the expectation that they would generate 

long-term growth regularities or quasi-cyclical patterns in the shape of a productivity 

slowdown followed by a productivity surge is far more questionable. 

 In the last few years the GPT approach has come under growing attack.  Joel 

Mokyr suggested that it can hardly be described as a theory and that its academic 

currency is on the wane (Mokyr, 2006).  Alexander Field (2008) convincingly 

suggests that GPT theory has little heuristic power.  Moreover he shows that the 

criteria commonly used by the literature to identify GPTs and to separate them from 

the rest of technical progress (what Helpman describes as incremental innovation) are 

at best subjective.  But they are also flawed in the sense of being too restrictive and to 

exclude technological transformations likely to produce significant growth effects.  

Indeed the impossibility of effectively using the proposed criteria for GPT selection 

has led to the compilation of vastly subjective and heterogeneous lists of historical 

examples of GPTs.  The heterogeneity of choice is such that only three GPTs appear 

in all the eleven compilations surveyed by Field.  They are what Field calls the Big 

Three namely: (1) IT or ICT (or more specifically semiconductors, or computer, or 

Internet); (2) electricity; and (3) steam.  These are indeed the three GPTs mentioned in 

the original article by David (1990) from which much of the GPT literature originates.  

Field observes that steam has already been dealt a serious blow in its status as a 

GPT by Crafts and Mills (2004).  Moreover, it is very difficult to describe steam as a 

GPT as its application was restricted to an exceedingly small amount of uses for the 

first half century after Newcomen‟s Dudley Castle Machine of 1712.  Even once Watt 
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invented the separate condenser, steam engine take-up remained for many decades 

slow and limited to a handful of uses (mostly mining).  Similarly, the development of 

high-pressure steam engines in the first two decades of the 19
th

 century did not expand 

steam use much beyond the realm of mining. It is only with the further advances in 

high-pressure technology and with the arrival of compounding in the 1840s and 50s, 

that steam can start to lay claims of generality in its use at least when it comes to 

textile production, metallurgy, land and, later, sea transport.  Yet, even in 1870 two 

thirds of steam power was concentrated in coal-mining, cotton textiles, and metal 

manufactures (Crafts and Mills, 2004).  In other words it took more than a century and 

a half for steam to become a GPT (on the relevance of the Corliss engine in the 

diffusion process of steam see Rosenberg and Trajtenberg, 2004).  The development 

of steam was so slow, its diffusion process so gradual, as to prevent any of the sudden 

accelerations and decelerations in growth and productivity that theory associates with 

GPTs.   

This leaves GPT literature with only two agreed examples: ICT; and its 

historical antecedent: electricity.  We concentrate on the latter.  In particular we look 

at the diffusion of electricity in the manufacturing sector before World War II. The 

focus on the manufacturing sector is the result of evidence indicating that the 

acceleration in US labour productivity growth during the 1920s originated almost 

entirely in the manufacturing sector (David and Wright, 2003; Field, 2006).  This 

surge in labour productivity in the manufacturing sector was common to all 

manufacturing industries and accounted for a substantial proportion of the increase in 

TFP observed in the first part of the interwar years.  If there is a productive sector 

where the effects of electricity as a GPT on productivity should be magnified and 

easily detectable that is manufacturing.  

To evaluate the hypothesis of a link between GPT and productivity growth we 

have built a new comparative data set of electricity diffusion in the manufacturing 

sector for the major industrial economies of the 20
th

 Century – covering the US, the 

UK, France, Germany and Japan. The selection of countries allows us to compare the 

experience of the US, as the technological leader, with the „relatively backward‟ 

economies of the early 20
th

 Century. 
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Our research extends the existing literature in a number of significant ways. 

David and Wright (2003) focus on the considerable acceleration of productivity 

growth in the US in the 1920s and associate this with a substantial increase in labour 

productivity and a concurrent fall in capital intensity in the US manufacturing sector. 

They see the upsurge in labour productivity as a direct result of the diffusion of 

electricity-based GPTs in production, and of the supply shock to the labour market 

caused by increasing restrictions on mass-immigration.  Although David and Wright 

also consider the experience of Britain and Japan, they rely on a descriptive analysis 

of the diffusion of electricity in the manufacturing sectors for these economies2. We 

extend this work by building a comparative data set of electricity consumption per 

worker in the manufacturing sector for the major industrial countries before WWII as 

a way of quantifying some of the existing qualitative and theoretical hypotheses. 

An important empirical regularity postulated by the GPT literature is the idea 

of a productivity slowdown in the early stages of the arrival of a new GPT. This idea 

can be found in David  (1991), in Bresnahan and  Trajtenberg (1995), in Helpman and 

Trajtenberg (1998a and 1998b), in Aghion and Hewitt (1998)3 and has been specified 

as a stylized fact of economic growth in the survey of Jovanovic and Rousseau (2005, 

p. 1187) who state:  

But overall the evidence clearly supports the view that technological progress is uneven, 

that it does entail the episodic arrival of GPTs, and that these GPTs bring on turbulence 

and lower growth early on and higher growth and prosperity later. The bottom line is 

that with a wider body of data and fifteen more years of it than David (1991) had at his 

disposal, we confirm his hypothesis that Electrification and IT adoption are 

manifestations of the same force at work, namely the introduction of a GPT. 

 

From a theoretical point of view the existence of a productivity slowdown is ascribed 

to a variety of mechanisms: capital obsolescence due to technological uncertainties 

(Bresnahan and  Trajtenberg, 1995; Helpman and Trajtenberg, 1998a and 1998b; 

Aghion and Howitt 1998; Howitt 1998); to excessive risk-taking in investment 

                                                 
2
 This leads David and Wright (2003, pp. 147-55) to argue that the use of electricity in manufacturing 

in Japan and Britain matched that of the US by the 1930s with similar productivity surges, suggesting 

that follower countries can accelerate the benefits of using the new technology. We show below that 

the quantitative evidence suggests that the US maintained its leadership position throughout the 

interwar period.  
3
 A similar argument is developed earlier by Phelps-Brown and Handfield-Jones (1952) as an 

application to the late 19
th

 Century  “climacteric” in Britain‟s economic growth. 
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decisions in the early phases of a GPT‟s diffusion process (Aghion and Howitt, 1998); 

to coordination  problems (Bresnahan and  Trajtenberg, 1995); to learning processes 

by firms (Hornstein and Krusell, 1996: Greenwood and Yorokoglu, 1997); the job 

training of employees (Helpman and Rangel, 1999); to the formation of skill 

differentials in response to the introduction of a new GPT (Aghion and Howitt 1998); 

to the required development of complementary technologies (Helpman and 

Tranjtenberg 1998a); and finally to measurement problems in the national accounts 

(Howitt 1998).  

As for the observation of such growth effects, this has been mostly based on a 

descriptive evaluation of historical productivity data. For example, David and Wright 

(2003) use Kendrick‟s productivity data to show the existence of a low growth phase 

during 1889-1913, compared to the pre-1889 phase and the 1920s. Jovanovic and 

Rousseau (2005) use ocular inspection of a Hodrick-Prescott trend of growth rates in 

output per man-hour to justify evidence of a productivity slowdown.  The same 

technique is then used to detect the subsequent productivity acceleration (the other 

main stylised fact associated with the arrival of a new GPT)4. Our aim is to use time 

series techniques to describe the trend movements and the episodic long swings of 

economic growth as a way of avoiding selection problems. 

There are two steps to our analysis: first, we present the results of our 

comparative data set, providing quantitative evidence on electricity usage on a per 

worker basis for five of the major industrial countries before WWII; we then consider 

whether this diffusion path is associated with the existence of phases of “productivity 

slowdown” and “productivity bonus” in the manufacturing sector‟s productivity 

growth as a way of evaluating the key empirical macroeconomic hypotheses of the 

GPT literature.   

 

 

 

 

 

 

                                                 
4
 They analyse Kendrick‟s output per man-hour in the non-farm sector. 
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1. ADOPTION OF ELECTRICITY IN THE MANUFACTURING SECTOR 

 

The traditional indicator of the extent of electrification of production has been 

the capacity of primary electric motors.  These are motors driven by electricity 

purchased from utilities and, therefore, not produced within the plant.  An indicator of 

the extent of electrification of production in the manufacturing sector that is directly 

linked to labour productivity is the capacity (in HP) of primary electric motors per 

employee.  Data on primary electric capacity is relatively easy to find, but it should be 

noted that such an indicator has serious drawbacks as a means of thinking about the 

effects of the electrification of production methods.  Electric motors were not 

necessarily employed at the same rate across countries because of differences at the 

national level in the number and length of shifts over which industrial machinery is 

operated in one day.  Moreover, the existence of secondary electric motors (those run 

on electricity produced within the industrial establishment), introduces a further 

element of confusion in the comparative exercise. A better and more direct way to 

assess the comparative contribution of the electrification of manufacturing processes 

to the growth of productivity is to use measures of electricity consumption per worker 

in the manufacturing sector.  The total electricity consumed by the US manufacturing 

sector in GWh is available in the Department of Commerce (1975, series D130). From 

this and from the data on employment in the manufacturing sector (Kendrick, 1961) 

we have obtained the observations on the electricity consumed per employee in the 

US manufacturing sector that appear in Figure 1. 

In order to be able to make international comparisons with the experience of 

the US we have constructed a similar data set for the total electricity consumed per 

employee in the UK, French, German and Japanese manufacturing sectors. A 

comparison of the consumption of electricity per employee in the manufacturing 

sector in these five countries is presented in Figure 2.  Figure 2 confirms that the 

adoption of electrical technologies in production was markedly delayed in the 

European core countries and Japan as compared to the US. The electricity consumed 

by each employee in the US manufacturing sector remained three times as high as that 

consumed by his/her European counterpart for much of the period, and fell below this 

threshold only in the last part of the 1930s Great Depression. 
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Two key conclusions emerge from this comparative data set. First, it is clear 

that the use of electricity in the manufacturing sector was far more extensive in the US 

than in the other major economies of the inter-war period. The lag between the leader 

and followers suggests that by the early 1920s the other economies had a comparable 

usage of electricity in manufacturing to that of the US around 1907. By the mid 1930s 

the follower countries had a comparable usage to the US in 1920. This result differs 

from the description of the diffusion of electricity in follower countries during the 

interwar period by David and Wright (2003) who claim that “...by the end of the 

1930s the extent of diffusion of electric power in British manufacturing as a whole 

essentially matched that in the US.”5
 

The quantitative comparative evidence suggests that the US managed to use more 

electricity per worker earlier than other countries and was able to sustain this lead even 

when other countries were making significant strides in diffusion in the inter-war period.   

The reason for the US lead in the use of electricity per worker is related to the rich 

resource endowment of the US, resulting in the relative cheapness of electricity.  This 

in turn was due to the relative cheapness of thermal generation in the US, owing to the 

low price of the natural resources (oil and coal) employed.  This hypothesis can be 

evaluated using census data for Britain and the US.  In 1935 the British manufacturing 

sector was reported to have bought 7,100 GWh of electric energy at a cost of £ 23,570, 

000.  This meant that the average cost of a KWh for the British manufacturer was £ 

0.00332 or 0.80d of the time.
6
  At the prevailing exchange rate of $ 4.971 per pound 

(Mitchell 1988, p. 703) in 1935 the price of a KWh bought by the average British 

manufacturer was equal to $ 0.0165.  As a term of comparison we observe that in 

1929 and 1937 the average price paid by US manufacturers to acquire a KWh was $ 

0.0127, and $ 0.0102 respectively.
7
  This suggests that the price of electricity paid by 

                                                 
5 David and Wright, 2003, pp. 149-50. 

6
 Our calculation on the basis of the individual industry cost returns of the 1935 UK census of 

production.  The original figures refer to electricity purchased and used, including electricity generated 

in other works under the same ownership. 

7
 Our calculations on data from the 1939 US census of manufactures.  Note that the data on the US 

KWh cost in manufacturing given by Broadberry 1997 in Table 7.5 p. 101 is mistakenly expressed in 

pence, while it should be expressed in US cents (see Melman 1956, p. 206).  Also note that the 

Melman‟s calculations based on the electricity price paid by large manufacturers are very close to our 

calculations based on the more comprehensive census returns in the US case, and are substantially 

lower than for the UK (0.69d as opposed to our 0.80d).   
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British manufacturers in 1935 was ca. 50 per cent higher than that paid by their US 

counterparts.  Given the strict correlation between the cost of electricity and the cost 

of its direct substitutes (coal, oil, etc.), this price differential indicates that sources of 

power in general were considerably cheaper in the US than in the UK.  In turn, this 

should be a strong indication of the energy intensive nature of production in the US, 

provided that one takes the not entirely unreasonable view that other production 

inputs such as capital and labour were not substantially cheaper in the US than in the 

UK (Broadberry, 1997, p. 101).  Indeed, there is strong evidence to suggest that the 

cost of labour relative to the cost of electric energy in manufacturing was at least 

twice as high in the US than in the UK, France, Germany and Japan for the duration 

of the second quarter of the twentieth century (Broadberry 1997, Table 7.5, p. 101 and 

Melman 1956, p. 206 and 213).  We can only agree with Broadberry‟s remarks on the 

likely continuation of the effect of energy endowments on comparative labour 

productivity in the rest of the century (Broadberry 1997, p. 102).
8
   

The Second key feature of the new data set is that the major European 

economies shared a common experience in the adoption of electricity in the 

manufacturing sector, despite their differing stages of development and per capita 

income (Japan shared a similar trend from a lower level of electricity per worker). 

This common path of electricity adoption by the European countries provides an 

opportunity to evaluate whether any productivity effects also follow common 

movements.  

 

 

 

                                                 
8
 Abramovitz and David (2000, pp. 50-53) stress the fundamental importance of natural resource 

abundance in shaping the form, rate, and underlying technologies of US growth up to the first quarter 

of the twentieth century.  They also maintain that natural resource abundance continued to play an 

important role in US growth in the rest of the century.  In a similar fashion Wright (1990, p. 651) notes 

that  „ … the single most robust characteristic of American manufacturing exports was intensity in 

nonreproducible natural resources.  In fact, their relative resource intensity was increasing over the 

half-century prior to the Great Depression.‟  Resource abundance characterises US industry as a whole 

in the last two centuries, and it is a necessary condition for many of the distinctively American 

industrial developments in this period (ibid. p. 653, and p. 661). 
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2. LABOUR PRODUCTIVITY TRENDS IN MANUFACTURING 
 

In this section we evaluate the key empirical hypotheses of the GPT literature - the 

existence of phases of “productivity slowdown” and “productivity bonus” in the 

manufacturing sector that can be associated with electricity diffusion.   Figure 3 plots 

the path of US manufacturing sector labour productivity on a logarithmic scale for the 

period 1889-19509.  For most of the 1920s the rate of growth of labour productivity 

was clearly high, averaging 5 per cent per annum during 1920-29.  Yet, given the 

cyclical nature of American economic growth some care is needed to distinguish the 

extent, nature and timing of any trend acceleration that may have resulted from 

electricity usage in this sector.   

Economic historians have described the cyclical path of the US economy 

before World War II as displaying a number of cycles of differing durations. One of 

the dominant fluctuations noted is the existence of irregular long swings (Abramovitz, 

1961, 1968), representing episodes of accelerated and retarded economic growth. The 

average period of these fluctuations was around the 20-year frequency10. To analyse 

the trends and cycles in the data we use the wavelet methodology to decompose 

labour productivity data into “approximations” and “details”: approximations capture 

the high-scale, low-frequency (trend) components of the data; and the details are the 

low-scale, high-frequency (cyclical) components. The major advantage of the wavelet 

method is that the non-parametric nature of the decomposition is able to capture the 

irregular nature of the period and amplitude of economic cycles and captures cyclical 

processes of different durations (an outline of the wavelet method is presented in the 

methodological Appendix to this paper).  

The trend in the US labour productivity is depicted in Figure 4 and the cyclical 

decompositions in Figure 5. The wavelet decomposition shows the existence of 

marked long swings of approximately 20 years.
11

  US manufacturing sector 

                                                 
9
 For the period before 1889 we can also use the available benchmark data for the years of 1869, 1879 

and 1889.  
10

 Jones and Olken (2005) have described this feature of modern growth as “Start-Stop Growth”, 

entailing large swings of growth within twenty-year intervals. Comin and Gertler (2006) have 

emphasised the importance of “medium-term business cycles”. Although both these studies focus on 

the US experience after World War II, the pre WWII displayed similar growth features. 
11

 The long swing pattern of growth observed after 1889 is also seen in the pre-1889 benchmark data, 

with the rate of growth of labour productivity averaging 0.72% pa over the period 1869-79 and 2.2% pa 
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productivity growth displays two key features in this period: first, much of the rapid 

growth of the US in the 1920s can best be seen as cyclical in nature; secondly, the 

sector also showed a series of accelerations in the 20
th

 Century, particularly over the 

trough-peak phases c.1909-1924 and c.1933-41.12  

The analysis of labour productivity trends in the US manufacturing sector 

raises doubts about the stylised facts postulated in the GPT literature. The idea of a 

productivity pause in the early stages of the diffusion of the new GPT is not verified 

by the data. Although there are episodes of slow productivity growth before the 1920s 

these are generally in the long swing frequency rather than the trended effects that 

have been postulated to arise from the diffusion process of a GPT. For example, 

David and Wright put forward the idea that US productivity growth slowed down in 

the period 1889-1913 compared to the pre-1889 phase. The labour productivity 

movements for the manufacturing sector conflict with this historical description. The 

data also suggests that although a productivity bonus is observed in the early 20
th

 

Century the trend acceleration begins before the 1920s and most of the gains in the 

1920s are cyclical gains. The marked swings in manufacturing sector productivity 

growth are a striking feature of early 20
th

 Century US economy. The description that 

arises from this analysis is that a phase of long-term slowdown that can be associated 

with the diffusion path of a GPT is not a robust stylised fact and the nature of any 

acceleration that may arise from the US adoption of electricity as a new GPT entails 

large swings of productivity growth rather than a smooth transition to a high growth 

trajectory.  

Figure 6 plots British manufacturing sector labour productivity during 1869-

1938, together with the wavelet estimate of the trend component. The trend displays 

segmentation in the interwar period with a period of trend acceleration in productivity 

growth.
13

 The data also display irregular long swings in labour productivity growth of 

durations below 20 years (see Figure 7). Hence, although there is evidence of trend 

acceleration associated with the late diffusion stage of electricity usage in British 

manufacturing, there is no evidence of long-run retardation in labour productivity in 

the early diffusion stage. The nearest we come to observing such a phase is the 

                                                                                                                                            
over the period 1879-89. 
12

 This description is consistent with the description of US productivity growth given by Field (2003). 
13

 This feature of the growth process is observed with simple descriptive statistics- over the period 

1920-38 the mean growth rate of labour productivity doubled relative to the pre-1913 period. 
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productivity retardation of the early 20
th

 Century. However, to perceive the retardation 

of the 1900s as an aspect of GPT growth runs contrary to the evidence of a relatively 

slow rate of adoption of electricity in British manufacturing in the first decade of the 20
th
 

century. The British case provides partial support for the GPT perspective in that there is 

a major gain in manufacturing sector productivity growth beginning in the 1920s and 

building momentum in the 1930s that is correlated with our evidence that by the 

1930s Britain had a comparable usage of electricity per worker to the US ten years 

earlier. It seems a strong possibility that by the interwar period British manufacturing 

was able to make significant productivity gains with the adoption of electricity in 

manufacturing production processes.  

Figure 8 plots labour productivity in the German manufacturing sector on a 

logarithmic scale using annual data over the period 1885-1938 (there are gaps in the 

data series over the trans-war period 1914-24).  Some benchmarked data for the 

period 1875-1885 also exist and is included for analysis. The break in the data series 

in the trans-war period forces us to evaluate a number of empirical hypotheses using 

the truncated data sets. We use the wavelet decomposition for the pre-1913 period to 

examine evidence of a productivity pause. The wavelet decomposition suggests that 

the pre-1913 trend is segmented into long swings of high and low growth (see Figure 

9). Table 1 utilises the benchmarked data for the period 1875-1885 and calculates the 

geometric growth rates for a number of long period comparisons. Labour productivity 

growth before 1913 is best depicted as following two complete swings of slow and 

fast rates of growth. 

Taking growth measures over complete swings shows that labour productivity 

growth averaged 1.33 per cent per annum during the complete swing of 1875-1898 

and 2.1 per cent during 1898-1913.  The German trends are clearly inconsistent with a 

productivity slowdown in the early diffusion stage of electricity as a new GPT. 

Table 1 compares interwar productivity growth with pre-1913 trends. The trans-

war shocks were so severe for Germany that the observed labour productivity growth 

of the inter-war epoch was not able to shift the long-term productivity performance of 

the German manufacturing sector. Over the period 1913-29 German labour 

productivity growth averaged 1.3 per cent per annum, comparable to the period before 

1900. Although the manufacturing sector‟s labour productivity growth rate over the 

inter-war period was high - the growth rate of 1925-38 (2.81% per annum) was higher 

than that of the high growth episode of 1898-1913 (2.1 per cent per annum) - given 
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the growth disruptions of the trans-war period this was not sufficient to shift the 

growth path of manufacturing productivity in Germany onto a path of trend 

acceleration. The German case fails to find any evidence of productivity slowdown or 

of a productivity bonus.   

 

 

Table 1: Labour Productivity Growth in German Manufacturing 

(Per cent growth per annum) 

 

 

 
GROWTH RATE 

INTER-PERIOD 

GROWTH CHANGE 

1875-1890
14

 0.38 - 

1890-1898 2.44 2.06 

1898-1902 0.004 -2.44 

1902-1913 2.69 2.29 

1913-1925
15

 -0.36 -3.05 

1925-1929 3.85 4.21 

1929-1938 2.34 -1.51 

 

An index for Japanese manufacturing sector labour productivity has been constructed 

on the basis of the employment data contained in Umemura et al. (1988), and of the 

output of the Japanese manufacturing industry over the period 1896-1940 taken from 

the Japanese historical national accounts (LTES)
 16

.  Figure 10 displays Japan‟s 

                                                 
14

 The pre-1885 data are based on the benchmark years of 1875, 1882 and 1885.  
15

 The calculation is based on the benchmark years of 1913 and 1925.  
16

 The data overlap in 1919 and 1920 allowing us to scale the pre-1919 series to be comparable to the 

interwar series. The employment data were estimated on the basis of annual surveys of establishment 

with more than nine employees before 1919, of establishments with more than four employees for the 

period 1919 – 1937, and for all establishments from 1938 onwards.  The extrapolation for the smaller 

establishments before 1938 and the coverage of the State-owned establishments were originally 

obtained using industrial census information and more comprehensive local surveys when available. 
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manufacturing sector labour productivity: the growth rate averaged 1.72% per annum 

over the period 1896-1940 but labour productivity fluctuated significantly about trend. 

The trend decomposition shows a clear break in the path of Japan‟s manufacturing 

productivity in the 1930s. The swings in labour productivity are displayed in Figure 

11. The growth rate calculations over the long swing phases are reported in Table 2.  

Looking at growth movements over complete swings we can see evidence of trend 

acceleration- the growth rate over the complete swing 1905-1925 averaged 1.17 per 

cent per annum and the growth rate over the period 1925-37 averaged 1.82 per cent 

per annum – this is clear in the estimate of the trend component in Figure 10. 

 

 

 

Table 2: Labour Productivity Growth in Japan‟s Manufacturing  

(Per cent growth per annum) 

 

 

 
GROWTH RATE 

INTER-PERIOD 

GROWTH CHANGE 

1896-1901 6.25 - 

1901-1905 -8.11 -14.36 

1905-1917 1.70 9.81 

1917-1925 0.38 -1.32 

1925-1933 3.74 3.36 

1933-1937 -2.00 -5.74 

 

 In the case of France the availability of data to discuss pre-1914 trends is 

limited. Observations for Labour input are available only for a few benchmark 

observations between 1872 and 1911, which limits us to drawing inferences on the 

underlying trend.17 The rate of growth of labour productivity growth in industry was 

                                                                                                                                            
 
17

 Benchmark observations exist for 1872, 1876,1881,1886, 1891, 1901, 1906 and 1911. 
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below 1 per cent per annum during the period 1872-1911. For the interwar period we 

were able to build an index of manufacturing sector productivity for the period 1921-

38.18 This is presented in Figure 12. It is clear that during the 1920s labour 

productivity growth in French manufacturing displays high growth rates (representing 

a doubling of the pre-1911 trend growth rate. However, with the onset of depression 

in the 1930s, France enters a phase of stagnant productivity growth over the lost 

decade of the 1930s. 

What is emerging from the investigation of the empirical relationship between 

electricity as a GPT and manufacturing sector productivity growth is a picture that 

does not fit well with the stylised facts postulated in the GPT literature. In no case do 

we find evidence of productivity slowdown in the early stages of electricity diffusion 

in the manufacturing sector. Productivity slowdowns are observed but they are 

cyclical in nature; such phases of growth are best described by the Kuznets swing 

literature (of 20-year cycles) and do not appear to be long-term retardations that can 

be attributed to the diffusion of electricity as a GPT.  

Evidence of a productivity bonus is mixed. The US case reveals a productivity 

bonus but this begins earlier than suggested in the GPT literature spanning the whole 

period c.1909-1929. Much of the permanent gain is observed during the period 1909-

1924, whist the gains of the 1920s are mainly cyclical. Considering the follower 

countries, despite sharing a common path of electricity usage per worker, they display 

significant heterogeneity in the time-path of a productivity bonus. Britain sees a 

productivity bonus mainly in the 1930s, Japan in the 1920s and the 1930s, France in 

the 1920s and Germany not at all. This clearly shows that we cannot simply relate the 

productivity trends of a country only to the technological path associated with 

electricity as a GPT. To explain this heterogeneity of productivity growth would 

require a much broader framework, discussing, amongst other things, the interactions 

of technology, the macroeconomic policy framework and the effect of shocks.   

The bottom line seems to be that ultimately the key empirical hypotheses of the 

GPT literature relating to macroeconomic performance cannot be verified from an 

examination of electricity adoption in the early 20
th

 Century. As a result there is no 
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 Using the labour input calculations for the manufacturing sector and assuming that the trends in 

industrial production display significant co-movements with those for the manufacturing sector. 
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unique cyclical path of slowdown and acceleration that can be predicted using this 

framework for analysing economic growth. The analysis of the interwar era suggests 

that there may exist productivity effects. However, these effects can only be analysed 

in a multivariate framework to capture the heterogeneity of growth experiences 

observed across countries that shared similar paths in the adoption of electricity. 

 

 

3.  CONCLUDING REMARKS 

 

Our examination of the relationship between electricity and economic growth 

suggests that the stylized facts of how GPTs affect economic growth need to be re-

written.  

First, a quasi-cycle of productivity slowdown, followed by a productivity 

bonus is not a robust empirical observation. Whether we consider the case of the US, 

as the technological leader of the world economy, or the path of the follower countries 

we do not observe a long period of productivity slowdown that can be attributed to “a 

time to sow”. Although there is more evidence for a productivity surge that can be 

associated with the trajectory of electricity usage in the manufacturing sector, some 

care is needed to interpret the nature of the relationship. A productivity bonus is 

observed in the case of the US but the lag of this growth effect may be shorter than 

postulated in the GPT literature –we find evidence of a trend acceleration beginning in 

the second decade of the 20
th

 Century, reinforced by cyclical growth in the 1920s. The 

follower countries share the path of electricity diffusion in the manufacturing sector 

but display heterogeneity in growth effects. For Britain we observe trend acceleration 

spread out over the interwar period; for France productivity growth accelerates only in 

1920s; for Germany there is no trend acceleration; and Japan sees strong trend 

acceleration in the 1930s. The relationship between electricity diffusion and 

productivity growth in manufacturing needs to be more nuanced than what is 

suggested by the stylized facts often found in the GPT literature.  The latter should 

probably not include an initial productivity slowdown. 

Secondly, the heterogeneity of growth movements in the major industrial 

countries of the 20
th

 Century suggests that the role of technology can only be one of a 

number of important variables determining growth outcomes. The GPT literature has 
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sought to test evidence for this perspective by looking for evidence of trend 

acceleration in the time-scale of decades. However, it is clear that within this 

timescale the determinants of productivity growth are not just technological. The 

heterogeneity of the productivity paths of industrial countries may be explicable 

within a technological and a policy perspective. For example, France is able to gain a 

productivity bonus in the 1920s but is unable to do so in the 1930s under its 

membership of the Gold Bloc.  

Finally, our study of electricity as a GPT can be used in conjunction with other 

case studies to build a broader picture of GPTs and economic growth. Crafts and Mills 

(2004) examined the case of steam as a GPT in the 19
th

 Century and found no 

evidence to support the macroeconomic hypotheses of the GPT framework when 

trying to explain British 19
th

 Century economic growth. The failure of GPT theory to 

account for 20
th

 Century growth suggests that caution is needed before we use GPT 

theory to explain historical economic growth. The bottom line is that the simplicity of 

GPT theory makes it an appealing theory of episodic growth but its simplicity is also 

its major weakness as a perspective to investigate historical economic growth. Our 

analysis thus confirms the growing doubts about the usefulness of the concept of 

GPT.   As Field notices,  the GPT theory fails to unequivocally individuate more than 

three historical examples: steam, electricity, and ICT.  Of these at least one (steam) is 

unlikely to have had much of an effect on growth and certainly shows little in the way 

of productivity retardation. As for the productivity bonuses they seem to have taken 

such an inordinate amount of time to materialise (a century and a half after 

Newcomen‟s original invention) as to be quantitatively indistinguishable from the 

growth effects of a multitude of other technological changes of the 19th century.  Now 

we find that even for electricity there is no evidence of productivity retardation and at 

most we have cases where there might be some long-term productivity bonus. Our 

evidence on electricity supports the conclusions of Crafts and Mills (2004) that “the 

newfound enthusiasm for General Purpose Technology models of long run growth 

processes should not be taken too far”. The historical case studies of steam and 

electricity raise the broader question of whether GPT theory can be a theory of 

macroeconomic growth – the inability of GPT theory to account for the historical 

record of growth raises strong doubts.  

What are we left with?  With a theory that suggest that GPTs are pervasive 

technological changes (of which there are few agreed examples), that might or might 
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not produce productivity accelerations. Being pervasive they are more likely than 

other technological changes to produce effects at the macro level but there are also 

many examples of less pervasive technological changes that are equally 

transformational.  So we are back to the old truism that big technological changes are 

going to produce noticeable effects on growth and productivity trends.  Yet, the 

significance for growth of a technological innovation has to be measured on at least 

three dimensions: pervasiveness (of how many productive processes it affects, number 

of spillovers, etc.); magnitude of its economic benefits (the size of social savings, and 

efficiency gains it affords, and the extent of each individual spillover); and speed of 

the diffusion process as, however pervasive and large the technological changes are, if 

it requires an exceedingly long time for them to diffuse their effect on growth and 

productivity would be so diluted as to be indistinguishable from the effects of lesser 

technological innovations and from those of policy.  In summary, we might need to 

demote GPT theory to a specific case of a more general and mundane relationship 

between technology and long-term growth according to which a big (not necessarily a 

pervasive) technological change will have big effects.  If it was a small technological 

change it would be likely to have small effects.  This is hardly news and hardly a 

theory and more in the realm of what the French would describe as a lapalissade.19  

 

  

 

 

  

                                                 
19

 The term lapalissade comes from ironical verses stating the utterly obvious referring to the French 

General Jacques de la Palice or la Palisse (1470 – 1525).  
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APPENDIX:WAVELET TREND-CYCLE DECOMPOSITION20 
 

Until recently the windowed Fourier transform (WFT) was the standard 

method used to detect cyclical components of time series in the frequency domain. 

The basic idea of the WFT is to break a time series into segments with a selected 

window function.  The Fourier transform is applied to each segment separately.21 The 

WFT produces a sequence of „local‟ spectrum of the time series x(t) along the time 

dimension. To assume stationarity and enhance the time information, one must use a 

short segment (window), which results in a poor frequency resolution. If one uses a 

long segment (window), frequency resolution improves to the detriment of time 

resolution, since it is difficult to know what frequencies occur at which time intervals.  

Clearly a major drawback of the WFT is that it uses a fixed window width to analyze 

economic time-series that display cycles of low and high frequencies and time-

varying features.22 

The wavelet transform is a new non-parametric method of decomposing 

nonstationary time series, which solves some of the problems of the windowed 

Fourier method. The wavelet transform uses a two-parameter family of function: time 

location (translation) parameter τ and scale parameter ,   
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where *
(.) is the complex conjugation of the wavelet function [(t-τ)/], the basis 

function in the wavelet transform.  Wavelet algorithms process data at different scales 

or resolutions.  The wavelet is dilated or compressed to extract frequency information 

from a time-series x(t).  The extent of dilation or compression is determined by the 

scale parameter , which is inversely related to the frequency of the wavelet.23  Thus, 
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 We would like to thank Weike Wu with helping us with this Appendix on wavelets. 
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 The windowing is accomplished via a weight function that places less emphasis on data near the 

interval's endpoints. 
22

 Clearly this problem is highly relevant to long-run data analysis, when such changes are more likely 

to occur. 
23

 This is similar to sinusoids.  For example, the effect of the scale factor a in sine is: 

f(t) = sin(t) ; a = 1 

f(t) = sin(2t) ; a = 1/2 

f(t) = sin(4t) ; a = 1/4 

Thus, for a sinusoid sin(t), the scale factor a is inversely related to the frequency . 
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in the wavelet transform, each frequency component is analyzed with a resolution 

appropriate for its scale.24  

To extract time information, the wavelet transform is computed for each value 

of the scale parameter  at different time location τ, similar to the WFT, from 

beginning to end of the signal x(t).  In contrast to the WFT, however, the window 

width of wavelet transform varies with frequency: the wavelet transform uses short 

windows at high frequencies and long windows at low frequencies. Thus, the difficult 

problem of determining an optimum window width is avoided. 

Whilst the Fourier transform has a single set of basis functions, sines and 

cosines, the wavelet transforms have an infinite set of possible basis functions.  The 

wavelet ψ(t) is defined to satisfy the following properties: 1) it integrates to 0, which 

ensures that ψ(t) is wave like, allowing us to extract frequency components around the 

trend. 2) It decays sufficiently fast and lasts through a finite period of time or space, in 

contrast to sine and cosine in Fourier transform, allowing us to obtain localisation in 

time. 

Given a wavelet ψ(t), the corresponding scaling function (t) can be defined to 

satisfy the following properties : 1) it integrates to 1, i.e. the scaling function is an 

averaging function; 2) it is normalised to have unit norm; 3) it is orthogonal to all 

corresponding wavelets; 4) it is orthogonal to its discrete translations; 5) at some 

scale, it can be obtained as a linear combination of itself at the next scale;  6) the 

wavelet can be obtained as a linear combination of dilates and translates of the scaling 

function. Thus, a pair of corresponding scaling function  and wavelet function ψ can 

be used to represent the smooth trend (low-frequency) part and the detailed (high 

frequency) part of a signal respectively. 

In calculating wavelet coefficients one approach is to use the so-called dyadic 

scales and time locations (translations):  = 2
j
 and  τ = 2

j
k, where j and k are integers.  

Working with this discrete wavelet transform (DWT) gives efficient estimates, 

without loss of accuracy. The scaling function and wavelet function are given as: 
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 Because the wavelet is scaled by , wavelet analysis is often called a time-scale analysis rather than a 

time-frequency analysis.   
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As j (and scale parameter 2
j
) increases, the function j,k  and ψj,k get shorter, whereas 

the translation step (i.e. 2
J
k) gets larger. Thus, time-frequency/scale resolution is not 

constant but varies with frequency. 

There are several types of wavelet functions available. The choice of the wavelet 

function to be used depends on the application, which requires a trade-off between 

properties such as smoothness, temporal location, frequency location, symmetry and 

orthogonality.  The Haar, Daubechies, Coiflets and Symlet are four examples of 

wavelets:   

1) The Haar wavelet is the first wavelet, proposed in the 1930s.  It is a square 

wavelet. If a process exhibits discontinuous jumps, the Haar wavelet may be 

best suited for describing this behaviour.  For studies of business cycles, 

however, the Haar wavelet is not appropriate, given the discontinuous nature 

of its waveform, which has poor allocation in frequency. 

2) Daubechies is the most used family of wavelets. This is nearly symmetric and 

when the scaling function has the same number of coefficients as the wavelet 

function, it is orthogonal; otherwise, it is biorthogonal.25  Daubechies‟ original 

paper shows that this wavelet is good for representing polynomial behaviour.   

3) Coiflet is more symmetrical than the Daubechies wavelet. Whereas 

Daubechies wavelet has vanishing moments for the wavelet functions but not 

for the corresponding scaling functions, Coiflet has vanishing moments for 

both. 
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 Classical wavelets require the filters to be orthogonal across both translation and scale, which gives a 

clean, robust system.  In this case, however, the wavelet and scaling functions must have the same 

length and the length must be even.  These restrictions prevent linear phase analysis, which is crucial in 

image processing.  Biorthogonal wavelet is the result of relaxing the restriction of orthogonality. 
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4) Except for the Haar system, no system of wavelet function and corresponding 

scaling function can be at the same time compactly supported26 and symmetric. 

Nevertheless, for practical purposes (in image processing for example), one 

can try to be as close as possible.   Symmlet is a result of this kind of effort. 

 
Within each family of wavelets (such as the Daubechies family), wavelets are 

often classified by the number of vanishing moments, a stringent mathematical 

definition related to the number of nonzero coefficients, e.g. Daubechies 4, 

Daubechies 6, etc. With more nonzero wavelet coefficients, the functions become 

smoother, resulting in better frequency location but poorer time location.   

Wavelets use a multiresolution decomposition (MRD) method. This means 

that a given time series x(t), with finite variance, can be decomposed into different 

approximations at different scales.  At the first level, x(t) can be decomposed into two 

components: S1 is the (smoothed) approximation of x(t) taking into account the low 

frequencies of the signal and its resolution is half of x(t), whereas the detail D1 

corresponds to the high frequency details of x(t) that are not in S1.  The decomposition 

process can be implemented recursively at different scales, i.e. successive 

approximations being decomposed in turn, so that x(t) is broken down into many 

lower resolution components (e.g. x(t) split into S1 and D1; S1 split into S2 and D2; S2 

split into S3 and D3; …).  MRD produces a family of hierarchically organized 

decompositions.  In theory, the decomposition process can be iterated until the 

individual details consist of a single sample or pixel.  In practice, the level chosen is 

based on a desired low-pass cut-off frequency. The detail component Dj is the 

discrepancy between two successive approximations Sj-1 and Sj.  As j increases, the 

resolution of Dj becomes poorer, which reflect the lower-frequency parts of the series. 

x(t) ≈ SJ(t) + DJ(t) + DJ-1(t) + … + D1(t)    (4) 

where J is the number of multi-resolution components or scales, and k ranges from 1 

to the number of coefficients in the corresponding component.  Of those, SJ denotes 

cycles with periodicity greater that 2
J+1 

periods (the “trend”) and the Dj (j = 1, 2, …, J) 

captures cycles between 2
j
 and 2

j+1
.  
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 If a wavelet/scaling function vanishes outside of a finite interval, it has compact support, which is 

useful for local analysis. 
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Mallat (1985, 1989) verified relationships between quadrature mirror filters, 

hierarchical algorithms27 and orthonormal wavelet bases.  Following Mallat‟s scheme, 

the approximation and details components in MRD are derived as, 

SJ(t) = ∑k sJ,k J,k(t)       (5) 

Dj(t) = ∑k dj,k ψJ,k(t)    j = 1, 2, …, J   (6) 

where  

 J is the number of multi-resolution components or scales, and k ranges from 1 

to the number of coefficients in the corresponding component; 

 the functions J,k and ψj,k (j = 1, 2, …, J) are the approximating scaling 

functions and wavelet functions respectively 

 the sJ,k are called the smooth coefficients and the dj,k are called the detail 

coefficients, which represent the smooth trend of the data at the coarsest scale 

and the deviations at scale j (j = 1, 2, …, J) respectively. With discrete 

wavelets, they can be approximated as:   
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The number of coefficients at a given scale j is related to the width of the 

wavelet function. When the length of the data n is divisible by 2
J
, there are n/2

j
 

coefficients dj,k at scale j (j = 1, 2, …, J).  Similarly, at the coarsest scale, there 

are n/2
J
 sJ,k coefficients28.   A strong output is given where the shape of x(t) is 

closely matched by the shape of the chosen wavelet. 

Thus, the multiresolution decomposition of expression (4) can be re-written as  

         x(t) ≈  ∑k sJ,k J,k(t) + ∑k dJ,k ψJ,k(t) + ∑k dJ-1,k ψJ-1,k(t)  + … + ∑k d1,k ψ1,k(t)   (9) 

                                                 
27

 This is also referred to as a pyramidal algorithm. 
28

 In total, there are  n (∑j1/2
j
 + 1/2

J
) = n  coefficients,  i.e. ∑jn/2

j
 detail coefficients and 1/2

J
 smooth 

coefficients. 
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Figure 5: Long Swings in US Manufacturing Sector Labour Productivity
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Figure 7: Long Swing Decomposition of UK manufacturing Labour Productivity 1869-1938
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Figure 9: Long Swing  in German Labour Productivity
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Figure 11: Long Swing in Japan's Manufacturing Labour Productivity
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Figure 12: French Manufacturing sector Labour Productivity Index 1921-1938
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